Big Data Analytics for Forecasting Tourism Recovery in Bali Island Using Multivariate Time Series
DOI:
https://doi.org/10.47608/jki.v18i22024.331-350Keywords:
big data, forecasting, multivariate time series, remote sensing, tourism demandAbstract
Bali is a famous tourist area and can significantly contribute to the Indonesian tourism sector. The COVID-19 pandemic has made Indonesian tourism, including Bali tourism, experience a decline. In March 2022, COVID-19 cases decreased, and the government began to relax some policies. The tourism sector is vital in economic recovery efforts after the COVID-19 pandemic. Therefore, it is necessary to identify tourism recovery to determine strategies and policies related to Indonesian tourism, especially in Bali. Multivariate time series forecasting of tourism demand can be used to identify tourism recovery using several significant data sources. The methods used are Vector Autoregressive (VAR), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The data used are the monthly official number of tourists, room occupancy rate, Google Trends, number of booking.com user reviews, and nighttime light intensity in Bali Province from January 2019 to December 2022. The results show that the best forecasting method is VAR, and modeling with multivariate time series forecasting can improve the performance of forecasting results. In addition, big data can be used as a source of supporting data that can provide better forecasting results, and the size of the dataset affects the selection of the best model. Furthermore, the descriptive and forecasting analysis results show that Bali tourism has experienced post-pandemic tourism recovery. The strategies and policies of the Bali government to restore Bali tourism faster are good enough.
Downloads
References
Alcoriza, G. B., & Policarpio, J. E. A. (2023). Post-Disaster Tourism: Building Resilient and Sustainable Communities. In J. Kumar, G. E. Bayram, & A. Sharma (Eds.), Resilient and Sustainable Destinations After Disaster: Challenges and Strategies (pp. 97–107). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80382-021-720231008
Badan Pusat Statistik. (2018). Jumlah Devisa Sektor Pariwisata. https://www.bps.go.id/id/statistics-table/2/MTE2MCMy/jumlah-devisa-sektor-pariwisata.html
Badan Pusat Statistik. (2022). Statistik Kunjungan Wisatawan Mancanegara 2021. https://www.bps.go.id/id/publication/2022/04/28/d79faad2c263388e94e160ee/statistik-kunjungan-wisatawan-mancanegara-2021.html
Badan Pusat Statistik Provinsi Bali. (2021). Banyaknya Wisatawan Mancanegara Bulanan ke Bali Menurut Pintu Masuk. https://bali.bps.go.id/id/statistics-table/2/MTA2IzI=/banyaknya-wisatawan-mancanegara-bulanan-ke-bali-menurut-pintu-masuk--orang-.html
Bi, J.-W., Liu, Y., & Li, H. (2020). Daily Tourism Volume Forecasting for Tourist Attractions. Annals of Tourism Research, 83, 102923. https://doi.org/10.1016/J.ANNALS.2020.102923
Biro Komunikasi dan Informasi Publik. (2022, May 20). Prokes Dilonggarkan, Kemenhub Terbitkan SE Perjalanan Domestik dan Internasional Terbaru. Kementerian Perhubungan. https://dephub.go.id/post/read/prokes-dilonggarkan,-kemenhub-terbitkan-se-perjalanan-domestik-dan-internasional-terbaru
Booking.com. (n.d.). Tentang Booking.comTM. Booking.Com. Retrieved May 25, 2023, from https://www.booking.com/content/about.id.html
Cepeda-Pacheco, J. C., & Domingo, M. C. (2022). Deep Learning and Internet of Things for Tourist Attraction Recommendations in Smart Cities. Neural Computing and Applications, 34(10), 7691–7709. https://doi.org/10.1007/S00521-021-06872-0
Cerqueira, V., Torgo, L., & Soares, C. (2019). Machine Learning vs Statistical Methods for Time Series Forecasting: Size Matters. ArXiv. https://arxiv.org/abs/1909.13316
Chang, P., Pang, X., He, X., Zhu, Y., & Zhou, C. (2022). Exploring the Spatial Relationship between Nighttime Light and Tourism Economy: Evidence from 31 Provinces in China. Sustainability, 14(12), 7350. https://doi.org/10.3390/SU14127350
Devkota, B., Miyazaki, H., Witayangkurn, A., & Kim, S. M. (2019). Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest. Sustainability, 11(17), 4718. https://doi.org/10.3390/SU11174718
Essien, A., & Chukwukelu, G. (2022). Deep Learning in Hospitality and Tourism: A Research Framework Agenda for Future Research. International Journal of Contemporary Hospitality Management, 34(12), 4480–4515. https://doi.org/10.1108/IJCHM-09-2021-1176
Faeni, D. P., Faeni, R. P., Riyadh, H. A., & Yuliansyah, Y. (2023). The COVID-19 Pandemic Impact on the Global Tourism Industry SMEs: A Human Capital Development Perspective. Review of International Business and Strategy, 33(2), 317–327. https://doi.org/10.1108/RIBS-08-2021-0116
Faris, M., & Pramana, S. (2021). Preparing a Big Data Utilization Communication Strategy. Journal of Physics: Conference Series, 1863, 012077. https://doi.org/10.1088/1742-6596/1863/1/012077
Fenitra, R. M., Abbas, A., Ekowati, D., & Suhairidi, F. (2022). Strategic Intent and Strategic Leadership: A Review Perspective for Post-COVID-19 Tourism and Hospitality Industry Recovery. In P. Mohanty, A. Sharma, J. Kennel, & A. Hassan (Eds.), The Emerald Handbook of Destination Recovery in Tourism and Hospitality (pp. 23–44). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80262-073-320221003
Frechtling, D. C. (2001). Forecasting Tourism Demand: Methods and Strategies (1st ed.). Routledge. https://doi.org/10.4324/9780080494968
Friscintia, P. B. A., & Alamsyah, A. (2019). Peramalan Tourism Demand Pada Pariwisata Indonesia Dengan Metode Artificial Neural Network Backpropagation. E-Proceeding of Management, 6(1), 503–509. https://openlibrary.telkomuniversity.ac.id/pustaka/files/148875/jurnal_eproc/peramalan-tourism-demand-pada-pariwisata-indonesia-dengan-metode-artificial-neural-network-backpropagation.pdf
Gössling, S., & Higham, J. (2021). The Low-Carbon Imperative: Destination Management under Urgent Climate Change. Journal of Travel Research, 60(6), 1167–1179. https://doi.org/10.1177/0047287520933679
Gössling, S., & Schweiggart, N. (2022). Two Years of COVID-19 and Tourism: What We Learned, and What We Should Have Learned. Journal of Sustainable Tourism, 30(4), 915–931. https://doi.org/10.1080/09669582.2022.2029872
Gulli, A., & Pal, S. (2017). Deep Learning with Keras: Implement Neural Networks with Keras on Theano and TensorFlow. Packt Publishing.
Jändel, M. (2010). A Neural Support Vector Machine. Neural Networks, 23(5), 607–613. https://doi.org/10.1016/J.NEUNET.2010.01.002
Li, H., Hu, M., & Li, G. (2020). Forecasting Tourism Demand with Multisource Big Data. Annals of Tourism Research, 83, 102912. https://doi.org/10.1016/J.ANNALS.2020.102912
Lin, W.-C., Wu, C. K., Le, T. K. T., & Nguyen, N. A. (2023). Assessment of Vietnam Tourism Recovery Strategies after COVID-19 Using Multi-Criteria Decision-Making Approach. Sustainability, 15(13), 10047. https://doi.org/10.3390/SU151310047
Liu, Y.-Y., Tseng, F.-M., & Tseng, Y.-H. (2018). Big Data Analytics for Forecasting Tourism Destination Arrivals with the Applied Vector Autoregression Model. Technological Forecasting and Social Change, 130, 123–134. https://doi.org/10.1016/J.TECHFORE.2018.01.018
Nuraini, R. (2020, March 2). Indonesia.go.id - Kasus Covid-19 Pertama, Masyarakat Jangan Panik. Indonesia.Go.Id. https://indonesia.go.id/narasi/indonesia-dalam-angka/ekonomi/kasus-covid-19-pertama-masyarakat-jangan-panik
Paludi, S. (2022). Setahun Pandemi COVID-19 dan Dampaknya Terhadap Industri Pariwisata Indonesia. Equilibrium: Jurnal Penelitian Pendidikan Dan Ekonomi, 19(01), 49–60. https://doi.org/10.25134/EQUI.V19I01.4337
Pramana, S., Paramartha, D. Y., Ermawan, G. Y., Deli, N. F., & Srimulyani, W. (2022). Impact of COVID-19 Pandemic on Tourism in Indonesia. Current Issues in Tourism, 25(15), 2422–2442. https://doi.org/10.1080/13683500.2021.1968803
Putri, K. (2023, March 20). Dispar Bali Prediksi Okupansi Hotel Naik 50 Persen Saat Nyepi. DetikBali. https://www.detik.com/bali/berita/d-6628370/dispar-bali-prediksi-okupansi-hotel-naik-50-persen-saat-nyepi
Putri, S. R., Wijayanto, A. W., & Pramana, S. (2023). Multi-Source Satellite Imagery and Point of Interest Data for Poverty Mapping in East Java, Indonesia: Machine Learning and Deep Learning Approaches. Remote Sensing Applications: Society and Environment, 29, 100889. https://doi.org/10.1016/J.RSASE.2022.100889
Putro, D. H. (2022). Penggunaan Pengineraan Jauh Untuk Mengamati Perubahan Aktivitas Manusia di Provinsi Bali Selama Pandemi. Politeknik Statistika STIS.
Ramadhan, R., Wijayanto, A. W., & Pramana, S. (2023). Geospatial Big Data Approaches to Estimate Granular Level Poverty Distribution in East Java, Indonesia using Machine Learning and Deep Learning Regressions. In W. Marsisno, R. Kurniawan, I. M. Arcana, S. Muchlisoh, J. R. H. Sitorus, R. Yuliana, & S. M. Berliana (Eds.), Proceedings of The International Conference on Data Science and Official Statistics (ICDSOS) (Vol. 2023, Issue 1, pp. 186–200). Politeknik Statistika STIS. https://doi.org/10.34123/ICDSOS.V2023I1.359
Rosenbloom, D., Markard, J., Geels, F. W., & Fuenfschilling, L. (2020). Why Carbon Pricing is Not Sufficient to Mitigate Climate Change—and How “Sustainability Transition Policy” Can Help. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 8664–8668. https://doi.org/10.1073/PNAS.2004093117
Sharma, G. D., Thomas, A., & Paul, J. (2021). Reviving Tourism Industry Post-COVID-19: A Resilience-Based Framework. Tourism Management Perspectives, 37, 100786. https://doi.org/10.1016/J.TMP.2020.100786
Song, H., Qiu, R. T. R., & Park, J. (2019). A Review of Research on Tourism Demand Forecasting: Launching the Annals of Tourism Research Curated Collection on Tourism Demand Forecasting. Annals of Tourism Research, 75, 338–362. https://doi.org/10.1016/J.ANNALS.2018.12.001
Utami, N. A., Wijayanto, A. W., Pramana, S., & Astuti, E. T. (2023). Spatially Granular Poverty Index (SGPI) for Urban Poverty Mapping in Jakarta Metropolitan Area (JMA): A Remote Sensing Satellite Imageries and Geospatial Big Data Approach. Earth Science Informatics, 16(4), 3531–3544. https://doi.org/10.1007/S12145-023-01084-7
WHO. (2023, May 5). Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic?adgroupsurvey=
Widarjono, A. (2013). Ekonometrika: Pengantar dan Aplikasinya (4th ed.). UPP STIM YKPN.
Winata, I. N. (2023, May 26). Jalan Terjal Menuju Pariwisata Berkualitas. Bali Post. https://www.balipost.com/news/2023/05/26/341043/Jalan-Terjal-Menuju-Pariwisata-Berkualitas.html
Yang, L., Li, X., & Hernández-Lara, A. B. (2024). Tourism and COVID-19 in China: Recovery and Resilience Strategies of Main Chinese Tourism Cities. International Journal of Tourism Cities, 10(2), 387–404. https://doi.org/10.1108/IJTC-04-2022-0084
Yanwardhana, E. (2021, December 22). Sandi Uno: Bali Penyumbang Devisa Terbesar di Pariwisata RI. CNBC Indonesia. https://www.cnbcindonesia.com/news/20211222193439-4-301297/sandi-uno-bali-penyumbang-devisa-terbesar-di-pariwisata-ri
Zhang, C., & Tian, Y.-X. (2022). Forecast Daily Tourist Volumes During the Epidemic Period Using COVID-19 Data, Search Engine Data and Weather Data. Expert Systems with Applications, 210, 118505. https://doi.org/10.1016/J.ESWA.2022.118505
Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast. IET Intelligent Transport Systems, 11(2), 68–75. https://doi.org/10.1049/IET-ITS.2016.0208

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Setia Pramana

This work is licensed under a Creative Commons Attribution 4.0 International License.